

With Big Data Comes Big Responsibility:

Hazard Analysis and Big Data

Sam Aigen

AcuTech Group, Inc Vienna, Virginia USA

www.acutech-consulting.com

Sam Aigen, CCPSC | Principal Engineer

- 14 years of experience
- 6 years with ExxonMobil
 - Utilities, Heat Transfer
 - Distillation
 - Hydroprocessing

- 8 years with AcuTech
 - Hundreds of PHAs
 - PSM/ RMP/ Seveso Audits
 - QRA/ Facility Siting Study
 - PSM Program Development
 - Terminal Supply and Logistics Modeling
 - Big data development team

Agenda

- Current applications of big data on PSM
- Background on hazard analyses and ways to automate
- Benefits and drawbacks of automating hazard analyses
- Where we see the future of automating hazard analyses

Current Application of Big Data on PSM

Numerical/Visual Data

- Drone Remote Inspection
- Rotating Equipment Reliability
- Instrument Integrity Levels
- Digital Twin
- AR/VR Plant Tour/ Models
- Personnel Protection/ Productivity

Machine learning and AI improve work and process efficiency

Complete Automation of PSM/ Hazard Analyses?

Image: Warner Bros

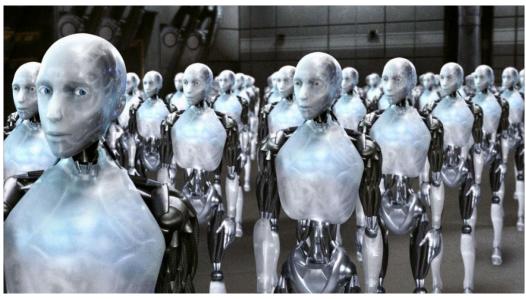
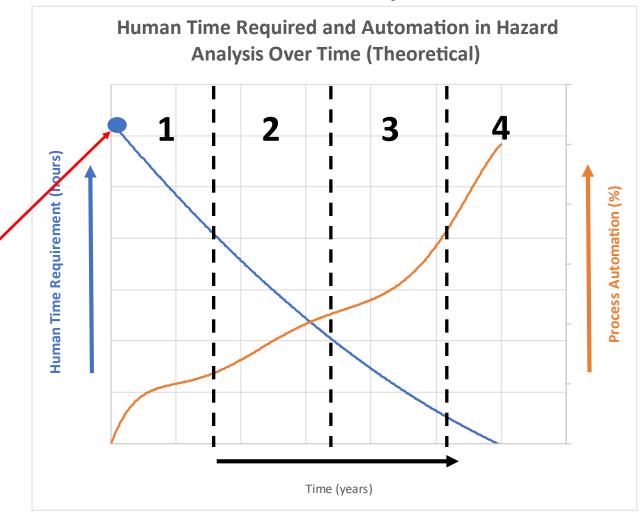


Image: Twentieth Century Fox Film Corporation

Not all processes are ready/ meant for full automation



Predicted Automation of Hazard Analyses

We are here

today

 As time progresses, human involvement will be reduced, but some human input will always be required

Main Elements of Hazard Analysis

Process Hazard Analysis

- Cause
- Consequence
- Safeguard
- Risk Ranking
- Recommendations
- Recommendation/ Results Analysis

Security Risk Assessment

- Cause
- Consequence
- Countermeasures
- Threat Ranking
- Risk Ranking
- Recommendations
- Recommendation Prioritization

History and Progress of Hazard Analysis

PHA

- Pre-1990s as required by company/ Seveso I
- 1990's PSM/ Seveso II
 - Very basic PHA
- 2000's LOPA/ Seveso III

SRA

- Pre- API-780 early SVA methods
 - Checklist/ survey; extremely quantitative methods
- 2002 SAFETY Act
 - Incentivize security methods and technologies

2013 - API 780 Recent SRAs

- Integrating cyber security, new technological challenges
- → Throughout software, standards, methodology

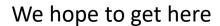
Potential Automation of Hazard Analysis

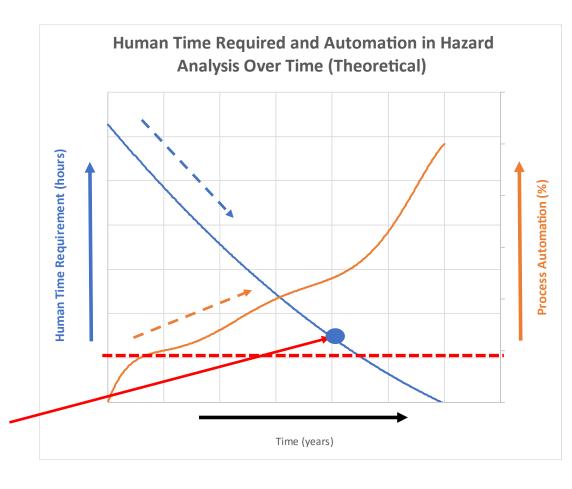
PHA

- Automate scenario development
 - Predefined list of cause/ consequence pairs
 - From P&ID analysis
 - Cause/ consequence/ safeguards
 - From process simulation/ RTO/ Digital twin
- Results analysis
- We can automate the study

SRA

- Automate scenario development
 - Plot adversary pathways (indoor vs. outdoor)
- Countermeasures import/ development (not easy to automate)
- Threat Ranking (not feasible to automate)
- Results analysis
- We can automate some of study

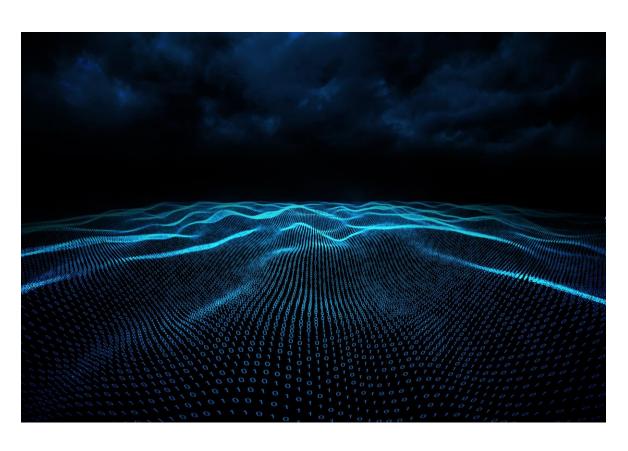

Benefits and Future of Hazard Analysis Automation


Benefits

- Time savings
 - Minimize human time required
- Consistency
 - Cause or consequence text and description
- Accuracy
 - Upstream/ downstream
 Scenarios

Prediction

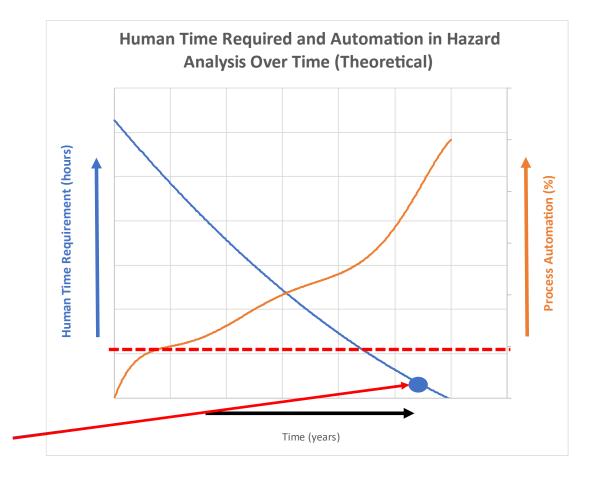
 Human time may be optimized, but cannot be removed altogether



Drawbacks of Over-Automating Hazard Analysis

Drawbacks

- Time commitment to build/ train model
 - Basic Model
 - Agreement on terms, descriptions etc.
 - Consequence description may vary
 - Advanced Model
 - How to identify correct consequences?
 - How to identify equipment type?
- Lacks Teamwork
 - Data Verification
 - Safeguards interlocks/ alarms
 - Safety Culture
 - Sense of ownership



What if We Over-Automate Hazard Analyses?

- Need minimum human input or product will not be useful
- Potential to lose knowledge of the process
 - Example: Major Pipeline (2021)
 - Extremely automated operation
 - Cyber attack caused system shutdown
 - Lost operational knowledge
 - Needed retirees to operate

What if we go too far?

Conclusions

- 1. Potential ML/AI application to Hazard Analyses
 - PHA/SRA/Other
- 2. Benefits of applying ML/AI to Hazard Analyses
 - Consistency/ Accuracy
 - Time
- Drawbacks of applying ML/ AI to Hazard Analyses
 - Initial time commitment
 - Current technological limitations
 - Loss of ownership/ safety culture
- Automation + human interaction → optimized PHA

Thank you!

• Please email me at saigen@acutech-consulting.com with any questions or more information

