

Integrating the PHA and FSS into a Site Risk Assessment Life Cycle

Sam Aigen CCPSC Colin Armstrong AcuTech Consulting Group Vienna, Virginia USA <u>www.acutech-consulting.com</u>

Authors

Colin D Armstrong | Senior Engineer

- Technical Lead for numerous FSS and QRA projects in oil, gas, LNG, and specialty chemical industries worldwide
- Experienced in all aspects of QRA, consequence modeling, frequency assessment, scenario analysis (FTA, FMEA, event tree, LOPA, etc.)
- Instructor of QRA and Consequence Modeling for operating companies and students at University of Maryland
- Investigator and expert witness in response to incidents and OSHA citations

Sam Aigen, CCPSC | Senior Engineer

- 12 years of experience
- 6 years with ExxonMobil
 - Utilities, Heat Transfer
 - Distillation
 - Hydroprocessing
- 6 years with AcuTech
 - Hundreds of PHAs
 - PSM/RMP/CalARP Audits
 - QRA/ Facility Siting Study
 - PSM Program Development
 - Terminal Supply and Logistics Modeling

Agenda

- Elements of Process Hazard Analysis (PHA)
- Elements of Risk-Based Facility Siting Study (FSS)
- PHA/FSS Overlap
- How a PHA Feeds to FSS
- How a FSS Feeds to PHA
- Information Flow Between the Studies
- Aligning Studies through Risk Criteria
- Q&A

Process Hazard Analysis

- Accepted framework
- Applied for decades
- PHA tools remain the same
 - Team-based approach to risk analysis
- Organizational comfort
- Vetted and accepted risk matrix
- Acceptable safeguards

Risk-Based Siting

- Stakeholder have less familiarity
- Risk
 - Individual
 - Societal
 - Location-Specific
 - Building-Specific
 - Worker-Specific
- Risk measures are less straightforward
 - Do not reference the familiar risk matrix
- Often not linked directly to a single incident
 - Aggregate risk

How do we make the studies work together?

Let's look first at what each one contains

Elements of Hazard Analysis Studies

- Looks at risk from a process viewpoint
- Recommendations based on qualitative risk assessment – team 'gut feeling'

- Looks at risk/hazards from a building viewpoint
- Recommendations based on quantitative risk assessment what is the actual risk

How PHA Feeds to FSS

Aligning Scenarios

The siting study may provide a more complete and accurate risk assessment of the PHA scenario

Safeguard

- Safeguards
 - PHA safeguards should be considered to define frequencies for scenariobased hazards in the FSS
 - FSS can assess the efficacy (consequence impacts) of certain safeguards (detection/isolation)
 - FSS may utilize event trees to consider the likelihood of mitigation options; may inform PHA safeguard listing

How FSS Feeds to PHA

- Key FSS Elements
 - Consequence Modeling
 - Release Scenarios
 - Hazard Identification
 - Location/ Climate
 - Vulnerability Criteria
 - Building Design Information
 - Frequency Analysis
 - Likelihood of release, weather, ignition

Single Scenario Consequence

(risk of all release scenarios on one severity/like inood of a person in a building) single scenario)

Consequence

• Consequence

- Consequence modeling can identify the maximum extent of the hazard for PHAs
- Quantitative FSS results should be referenced when the PHA is revalidated to create more accurate qualitative consequence evaluation
- FSS scenario modeling can be used as reference point for PHA

Information Flow Between Studies

- Unique Process Hazards
 - Decomposition, Runaway, Internal Deflagration
- Safeguards
 - Detection/Isolation

PHA

- Quantitative Consequence Results
 - Unmitigated consequence results
 - Consequences of mitigated scenarios (detected/isolated events)

FSS

D

Information Flow Between Studies

• Unique Process Hazards • Decomposition, Runaway, Internal Deflagration • Safeguards Detection/Isolation PHA **FSS** • Quantitative Consequence Results • Unmitigated consequence results • Consequences of mitigated scenarios (detected/isolated events) **Risk Criteria**

Risk Criteria

- PHAs assess risk for each scenario that is considered in the study
- The team estimates the severity of each scenario
- The team estimates or calculates the frequency of each scenario
- Risk assessments are for individual scenarios

- FSSs assess risk to building occupants from all scenarios in the study
- The study models the severity of each scenario (impacts to all buildings)
- The study calculates the frequency of each scenario
- The risk is then aggregated/summed for each building to determine the cumulative risk at each location or for the site overall

Risk Criteria

			EVENT FREQUENCY				
			10-0 - 10-1	10-1 - 10-2	10-2 - 10-3	10-3 - 10-4	10-4 - 10-5
			1	2	3	4	5
CONSEQUENCE	M ultiple Fatalities	A	v	IV	m	ш	
	Single Fatality	В	IV	IV	Ó		P
	Perm Disab	с	m	111	ш	н	1
	Lost Time	D	10	m	н	1	
	Recordable Injury	D	U.	I	- 1	1	3
	First Aid or Less	E	Ш	91	4	1	- 2

- Risk Criteria
 - The acceptable frequency for aggregate risk criteria must inevitably be greater than that used in PHAs
 - Aggregate risk is the SUM of all process hazard scenario risks with the potential to impact a location
 - Expect aggregate risk criteria to be 10-100x higher than the PHA risk criteria
 - Dependent on the number of hazards which could impact a location
 - F-N pairs could be compared directly to a risk matrix

Questions?

AcuTech Consulting Group 1919 Gallows Road, Suite 900 Vienna, VA 22182 USA www.acutech-consulting.com